A honeycomb-like porous carbon derived from pomelo peel for use in high-performance supercapacitors.
نویسندگان
چکیده
A cost-effective approach to obtain electrode materials with excellent electrochemical performance is critical to the development of supercapacitors (SCs). Here we report the preparation of a three-dimensional (3D) honeycomb-like porous carbon (HLPC) by the simple carbonization of pomelo peel followed by KOH activation. Structural characterization indicates that the as-prepared HLPC with a high specific surface area (SSA) up to 2725 m(2) g(-1) is made up of interconnected microporous carbon walls. Chemical analysis shows that the HLPC is doped with nitrogen and also has oxygen-containing groups. Electrochemical measurements show that the HLPC not only exhibits a high specific capacitance of 342 F g(-1) and 171 F cm(-3) at 0.2 A g(-1) but also shows considerable rate capability with a retention of 62% at 20 A g(-1) as well as good cycling performance with 98% retention over 1000 cycles at 10 A g(-1) in 6 M KOH. Furthermore, an as-fabricated HLPC-based symmetric SC device delivers a maximum energy density of ∼9.4 Wh kg(-1) in the KOH electrolyte. Moreover, the outstanding cycling stability (only 2% capacitance decay over 1000 cycles at 5 A g(-1)) of the SC device makes it promising for use in a high-performance electrochemical energy system.
منابع مشابه
Cost Effective and Scalable Synthesis of MnO2 Doped Graphene in a Carbon Fiber/PVA: Superior Nanocomposite for High Performance Flexible Supercapacitors
In the current study, we report new flexible, free standing and high performance electrodes for electrochemical supercapacitors developed througha scalable but simple and efficient approach. Highly porous structures based on carbon fiber and poly (vinyl alcohol) (PVA) were used as a pattern. The electrochemical performances of Carbon fiber/GO-MnO2/CNT supercapacitors were characteriz...
متن کاملNitrogen-Doped Banana Peel–Derived Porous Carbon Foam as Binder-Free Electrode for Supercapacitors
Nitrogen-doped banana peel-derived porous carbon foam (N-BPPCF) successfully prepared from banana peels is used as a binder-free electrode for supercapacitors. The N-BPPCF exhibits superior performance including high specific surface areas of 1357.6 m²/g, large pore volume of 0.77 cm³/g, suitable mesopore size distributions around 3.9 nm, and super hydrophilicity with nitrogen-containing functi...
متن کاملEnhanced Oxygen Reduction Reaction by In Situ Anchoring Fe2N Nanoparticles on Nitrogen-Doped Pomelo Peel-Derived Carbon
The development of effective oxygen electrode catalysts for renewable energy technologies such as metal-air batteries and fuel cells remains challenging. Here, we prepared a novel high-performance oxygen reduction reaction (ORR) catalyst comprised of Fe₂N nanoparticles (NPs) in situ decorated over an N-doped porous carbon derived from pomelo peel (i.e., Fe₂N/N-PPC). The decorated Fe₂N NPs provi...
متن کاملPorous honeycomb structures formed from interconnected MnO2 sheets on CNT-coated substrates for flexible all-solid-state supercapacitors
The use of lightweight and easily-fabricated MnO2/carbon nanotube (CNT)-based flexible networks as binder-free electrodes and a polyvinyl alcohol/H2SO4 electrolyte for the formation of stretchable solid-state supercapacitors was examined. The active electrodes were fabricated from 3D honeycomb porous MnO2 assembled from cross-walled and interconnected sheet-architectural MnO2 on CNT-based plast...
متن کاملFacile Control of the Porous Structure of Larch-Derived Mesoporous Carbons via Self-Assembly for Supercapacitors
Mesoporous carbons have been successfully synthesized via self-assembly using larch-based resins as precursors and triblock copolymers as soft templates. The porous structure of mesoporous carbons can be tailored by adjusting the ratio of hydrophilic/hydrophobic (EO/PO) units owing to interfacial curvature. Interestingly, the porous structures show a distinct change from vortex-like to worm-lik...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 6 22 شماره
صفحات -
تاریخ انتشار 2014